Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 636: 167-175, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628899

RESUMO

The piezo-/photocatalytic effects of ZnO have been in the limelight because of their great potential in environmental remediation and energy conversion. However, the poor recyclability of the suspended catalysts can cause inevitable secondary pollution, which is one of the major issues that limit the practical application of these materials. To address this problem, a magnetically retrievable Fe3O4@SiO2@ZnO nanocomposite was designed and successfully synthesized by multi-step reactions. The ZnO nanorods were vertically grown on the surface of the magnetic Fe3O4@SiO2 microspheres, while SiO2 served as an insulator to protect the inner core and to inhibit charge transfer across the core/shell interface. The Fe3O4@SiO2@ZnO nanocomposite can be easily collected and separated by using a magnetic field. Along with the good recyclability, the material also exhibited high efficiencies in piezocatalytic, photocatalytic and piezo-photocatalytic dye degradation processes. The rate constant of piezo-photocatalysis reached 95.9 × 10-3 min-1, which was 2.2 and 6.1 times that of the individual piezocatalysis and photocatalysis, respectively. The present result confirmed the existence of a synergetic effect between piezo- and photocatalytic processes. Hereby, we demonstrated that incorporation of a magnetic carrier is a feasible strategy to achieve retrievable and highly efficient piezo-/photocatalyst.

2.
ACS Appl Mater Interfaces ; 14(4): 5223-5236, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067059

RESUMO

Piezocatalysis is one of the green and promising catalytic technologies for the degradation of organic pollutants. Surface modifications such as exposed facet engineering and surface decoration of nanoparticles (NPs) are simple but useful enhancement strategies for a catalytic system. However, the synergistic effect and mechanism of facet engineering and dual-cocatalyst decoration on piezocatalytic activity are still ambiguous and more investigations are expected. Herein, the piezocatalytic activities of BaTiO3 (BTO) polyhedrons with anisotropic {001} and {110} facets and BTO cubes with isotropic {001} facets were compared. Furthermore, BaTiO3 (BTO) convex polyhedrons with selectively deposited Ag NPs and uniformly loaded Co3O4 quantum dots (QDs) are rationally synthesized through photochemical deposition. The individual and synergistic effects of Ag NPs and Co3O4 QDs on the piezocatalytic activities are systematically studied. It was found that dual-cocatalyst-modified BTO possesses the highest piezocatalytic activity in methyl orange degradation, with a reaction constant k of 0.0539 min-1, around 5, 2.2, and 1.3 times higher than that of nonmodified and Ag NP- and Co3O4 QD-modified BTO, respectively. Moreover, dual-cocatalyst-decorated BTO also exhibits excellent piezocatalytic performance in nondye pollutant degradation, with ∼100% tetracycline hydrochloride decomposed in 60 min. By analyzing the contribution, quantifying the amount of different free radicals, and comparing the chemical states of surface elements before and after piezocatalytic measurements, it was inferred that facet-dependent Ag NPs acted as efficient electron-transport sites, while uniformly loaded Co3O4 QDs served as hole-transfer sites to fully facilitate the migration of electrons and holes in a piezocatalytic reaction. This research presents a rational and effectual modification strategy to enhance the piezocatalytic activity of piezocatalysts and gives a thorough discussion of the enhanced mechanism.

3.
J Colloid Interface Sci ; 607(Pt 2): 1589-1602, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587533

RESUMO

It is of great significance to understand the role of carrier in piezocatalysis of composites by studying the separation mode of carriers under dynamic polarization field. Herein, the separation and migration pathways of carriers under piezoelectric field are investigated by synthesizing heterojunctions with Bi2WO6 (BWO) nanosheets grown vertically on g-C3N4 (CN) coated ZnO nanorods and directly on ZnO. Compared with the photocatalysis, the piezocatalytic efficiency of Rhodamine B (RhB) by BWO/ZnO is significantly increased to 0.121 min-1, which indicated the polarization field promotes band tilt and Z-scheme formation. After introducing the CN interlayer, the piezocatalytic efficiency of BWO/CN/ZnO is further improved (0.217 min-1), which can be attributed to the unique core-shell structure with Z-scheme heterojunctions. This unique structure provides more active sites and excited carrier concentration, the intermediate layer CN also reduces the direct contact and recombination of electrons and holes controlled by polarization potential at the interface between BWO and ZnO. This work deeply analyzes the influence of carrier concentration, separation efficiency and transport process on piezocatalysis, which provides a reference for the design of efficient catalysts.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Catálise , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...